#%tensorflow_version 1.x
# importing the required libraries
import pandas as pd
import numpy as np
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import sys
sys.path.append(r'../../../codes/python/modules')
%load_ext autoreload
%autoreload 2
import utils
The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload
df_train = pd.read_csv('./data/train_XnW6LSF.csv')
df_test = pd.read_csv('./data/test_FewQE9B.csv')
df = pd.concat([df_train.assign(source = 'train'), df_test.assign(source = 'test')])
# looking at the first five rows of the dataset
df.head()
Item_Identifier | Item_Weight | Item_Fat_Content | Item_Visibility | Item_Type | Item_MRP | Outlet_Identifier | Outlet_Establishment_Year | Outlet_Size | Outlet_Location_Type | Outlet_Type | Item_Outlet_Sales | source | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | FDA15 | 9.30 | Low Fat | 0.016047 | Dairy | 249.8092 | OUT049 | 1999 | Medium | Tier 1 | Supermarket Type1 | 3735.1380 | train |
1 | DRC01 | 5.92 | Regular | 0.019278 | Soft Drinks | 48.2692 | OUT018 | 2009 | Medium | Tier 3 | Supermarket Type2 | 443.4228 | train |
2 | FDN15 | 17.50 | Low Fat | 0.016760 | Meat | 141.6180 | OUT049 | 1999 | Medium | Tier 1 | Supermarket Type1 | 2097.2700 | train |
3 | FDX07 | 19.20 | Regular | 0.000000 | Fruits and Vegetables | 182.0950 | OUT010 | 1998 | NaN | Tier 3 | Grocery Store | 732.3800 | train |
4 | NCD19 | 8.93 | Low Fat | 0.000000 | Household | 53.8614 | OUT013 | 1987 | High | Tier 3 | Supermarket Type1 | 994.7052 | train |
# shape of the data
df.shape
(14204, 13)
# data types of the variables
df.dtypes
Item_Identifier object Item_Weight float64 Item_Fat_Content object Item_Visibility float64 Item_Type object Item_MRP float64 Outlet_Identifier object Outlet_Establishment_Year int64 Outlet_Size object Outlet_Location_Type object Outlet_Type object Item_Outlet_Sales float64 source object dtype: object
Check categorical variables: Item_Fat_Content, Item_Type, Outlet_Size, Outlet_Location_Type, Outlet_Type
# Filter categorical variables
cat_cols = [x for x in df.dtypes.index if df.dtypes[x] == 'object']
# Exclude ID cols and source:
cat_cols = [x for x in cat_cols if x not in ['Item_Identifier', 'Outlet_Identifier', 'source']]
# Print frequency of categories
for col in cat_cols:
print ('\nFrequency of Categories for varible %s'%col)
print (df[col].value_counts())
Frequency of Categories for varible Item_Fat_Content Low Fat 8485 Regular 4824 LF 522 reg 195 low fat 178 Name: Item_Fat_Content, dtype: int64 Frequency of Categories for varible Item_Type Fruits and Vegetables 2013 Snack Foods 1989 Household 1548 Frozen Foods 1426 Dairy 1136 Baking Goods 1086 Canned 1084 Health and Hygiene 858 Meat 736 Soft Drinks 726 Breads 416 Hard Drinks 362 Others 280 Starchy Foods 269 Breakfast 186 Seafood 89 Name: Item_Type, dtype: int64 Frequency of Categories for varible Outlet_Size Medium 4655 Small 3980 High 1553 Name: Outlet_Size, dtype: int64 Frequency of Categories for varible Outlet_Location_Type Tier 3 5583 Tier 2 4641 Tier 1 3980 Name: Outlet_Location_Type, dtype: int64 Frequency of Categories for varible Outlet_Type Supermarket Type1 9294 Grocery Store 1805 Supermarket Type3 1559 Supermarket Type2 1546 Name: Outlet_Type, dtype: int64
df['Item_Fat_Content'].replace({'LF':'Low Fat', 'reg': 'Regular', 'low fat': 'Low Fat'}, inplace = True)
In our EDA we observe that Item_Visibility
had minimum value 0. This make no sense, lets consider it as missing value and impute with its mean.
#Determine average visibility of a product
df_tmp = df.pivot_table(values = 'Item_Visibility', index = 'Item_Identifier')
#Impute 0 values with mean visibility of that product
df_miss = df['Item_Visibility'] == 0
print ('Number of 0 values initially: %d'%sum(df_miss))
df.loc[df_miss,'Item_Visibility'] = df.loc[df_miss,'Item_Identifier'].apply(lambda x: df_tmp.at[x, 'Item_Visibility'])
print ('Number of 0 values after modification: {}'.format(sum(df['Item_Visibility'] == 0)))
Number of 0 values initially: 879 Number of 0 values after modification: 0
# checking missing values in the data
df.isnull().sum()
Item_Identifier 0 Item_Weight 2439 Item_Fat_Content 0 Item_Visibility 0 Item_Type 0 Item_MRP 0 Outlet_Identifier 0 Outlet_Establishment_Year 0 Outlet_Size 4016 Outlet_Location_Type 0 Outlet_Type 0 Item_Outlet_Sales 5681 source 0 dtype: int64
#Import mode function:
from scipy.stats import mode
# Determing the mode for each Outlet_Type
# 1st WAY: outlet_size_mode = df.pivot_table(values='Outlet_Size', columns='Outlet_Type',aggfunc=(lambda x:mode(x).mode[0]) )
df_tmp = utils.gen_groupby(df, 'Outlet_Size', (lambda x:mode(x).mode[0]), grpby_col_names = 'Outlet_Type')
print ('Mode of Outlet_Size for each Outlet_Type:')
print (df_tmp)
# Get a boolean variable specifying missing Outlet_Size records
df_miss = df['Outlet_Size'].isnull()
# Impute data and check #missing values before and after imputation to confirm
print ('\nOrignal #missing: %d'% sum(df_miss))
df.loc[df_miss, 'Outlet_Size'] = df.loc[df_miss, 'Outlet_Type'].apply(lambda x: df_tmp.loc[x])
print(sum(df['Outlet_Size'].isnull()))
Mode of Outlet_Size for each Outlet_Type: Outlet_Size Outlet_Type Grocery Store Small Supermarket Type1 Small Supermarket Type2 Medium Supermarket Type3 Medium Orignal #missing: 4016 0
# 1st WAY: df.pivot_table(values='Item_Weight', index='Item_Identifier') # aggfunc='mean'
df_tmp = utils.gen_groupby(df, 'Item_Weight', 'mean', grpby_col_names = 'Item_Identifier')
df_miss = df['Item_Weight'].isnull()
# Impute data and check #missing values before and after imputation to confirm
print ('Orignal #missing: %d'% sum(df_miss))
df.loc[df_miss, 'Item_Weight'] = df.loc[df_miss, 'Item_Identifier'].apply(lambda x: df_tmp.loc[x])
print (sum(df['Item_Weight'].isnull()))
Orignal #missing: 2439 0
# checking missing values after imputation
df.isnull().sum()
Item_Identifier 0 Item_Weight 0 Item_Fat_Content 0 Item_Visibility 0 Item_Type 0 Item_MRP 0 Outlet_Identifier 0 Outlet_Establishment_Year 0 Outlet_Size 0 Outlet_Location_Type 0 Outlet_Type 0 Item_Outlet_Sales 5681 source 0 dtype: int64
#Remember the data is from 2013
df['Outlet_Years'] = 2013 - df['Outlet_Establishment_Year']
df['Outlet_Years'].describe()
count 14204.000000 mean 15.169319 std 8.371664 min 4.000000 25% 9.000000 50% 14.000000 75% 26.000000 max 28.000000 Name: Outlet_Years, dtype: float64
# Getting the first two characters of ID to separate them into different categories
df['Item_Category'] = df['Item_Identifier'].apply(lambda x: x[0:2])
df['Item_Category'] = df['Item_Category'].map({'FD':'Food', 'NC':'Non_Consumable', 'DR':'Drinks'})
df['Item_Category'].value_counts()
Food 10201 Non_Consumable 2686 Drinks 1317 Name: Item_Category, dtype: int64
# Drop the columns which have been converted to different types:
df.drop(['Item_Type', 'Outlet_Establishment_Year'], axis = 1, inplace = True)
# converting the categories into numbers using map function
#Item_Fat_Content, Item_Type, Outlet_Identifier, Outlet_Size, Outlet_Location_Type, Outlet_Type
df['Item_Fat_Content'] = df['Item_Fat_Content'].map({'Low Fat': 1, 'Regular': 0})
df['Outlet_Size'] = df['Outlet_Size'].map({'Small': 0, 'Medium': 1, 'High': 2})
df['Outlet_Location_Type'] = df['Outlet_Location_Type'].map({'Tier 1': 0, 'Tier 2': 1, 'Tier 3': 2})
df2 = df.copy()
df2.head()
Item_Identifier | Item_Weight | Item_Fat_Content | Item_Visibility | Item_MRP | Outlet_Identifier | Outlet_Size | Outlet_Location_Type | Outlet_Type | Item_Outlet_Sales | source | Outlet_Years | Item_Category | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | FDA15 | 9.30 | 1 | 0.016047 | 249.8092 | OUT049 | 1 | 0 | Supermarket Type1 | 3735.1380 | train | 14 | Food |
1 | DRC01 | 5.92 | 0 | 0.019278 | 48.2692 | OUT018 | 1 | 2 | Supermarket Type2 | 443.4228 | train | 4 | Drinks |
2 | FDN15 | 17.50 | 1 | 0.016760 | 141.6180 | OUT049 | 1 | 0 | Supermarket Type1 | 2097.2700 | train | 14 | Food |
3 | FDX07 | 19.20 | 0 | 0.017834 | 182.0950 | OUT010 | 0 | 2 | Grocery Store | 732.3800 | train | 15 | Food |
4 | NCD19 | 8.93 | 1 | 0.009780 | 53.8614 | OUT013 | 2 | 2 | Supermarket Type1 | 994.7052 | train | 26 | Non_Consumable |
# generate binary values using get_dummies
df = pd.get_dummies(df2, columns=['Outlet_Type', 'Item_Category'])
df.head()
Item_Identifier | Item_Weight | Item_Fat_Content | Item_Visibility | Item_MRP | Outlet_Identifier | Outlet_Size | Outlet_Location_Type | Item_Outlet_Sales | source | Outlet_Years | Outlet_Type_Grocery Store | Outlet_Type_Supermarket Type1 | Outlet_Type_Supermarket Type2 | Outlet_Type_Supermarket Type3 | Item_Category_Drinks | Item_Category_Food | Item_Category_Non_Consumable | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | FDA15 | 9.30 | 1 | 0.016047 | 249.8092 | OUT049 | 1 | 0 | 3735.1380 | train | 14 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | DRC01 | 5.92 | 0 | 0.019278 | 48.2692 | OUT018 | 1 | 2 | 443.4228 | train | 4 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
2 | FDN15 | 17.50 | 1 | 0.016760 | 141.6180 | OUT049 | 1 | 0 | 2097.2700 | train | 14 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
3 | FDX07 | 19.20 | 0 | 0.017834 | 182.0950 | OUT010 | 0 | 2 | 732.3800 | train | 15 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | NCD19 | 8.93 | 1 | 0.009780 | 53.8614 | OUT013 | 2 | 2 | 994.7052 | train | 26 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
if False:
# generate binary values using get_dummies
df = pd.get_dummies(df2, columns=['Item_Fat_Content', 'Outlet_Size', 'Outlet_Location_Type', 'Item_Type', 'Outlet_Type'])
df.head()
df_train = df[df.source == 'train'].drop('source', axis = 1)
df_test = df[df.source == 'test'].drop('source', axis = 1)
# saving the pre-processed data
df_train.to_csv('./data/train_preprocessed.csv', index=False)
df_test.to_csv('./data/test_preprocessed.csv', index=False)
data = pd.read_csv('./data/train_preprocessed.csv')
# check version on sklearn
print('Version of sklearn:', sklearn.__version__)
Version of sklearn: 0.23.2
# checking missing values
data.isnull().sum()
Item_Identifier 0 Item_Weight 0 Item_Fat_Content 0 Item_Visibility 0 Item_MRP 0 Outlet_Identifier 0 Outlet_Size 0 Outlet_Location_Type 0 Item_Outlet_Sales 0 Outlet_Years 0 Outlet_Type_Grocery Store 0 Outlet_Type_Supermarket Type1 0 Outlet_Type_Supermarket Type2 0 Outlet_Type_Supermarket Type3 0 Item_Category_Drinks 0 Item_Category_Food 0 Item_Category_Non_Consumable 0 dtype: int64
# checking the data type
data.dtypes
Item_Identifier object Item_Weight float64 Item_Fat_Content int64 Item_Visibility float64 Item_MRP float64 Outlet_Identifier object Outlet_Size int64 Outlet_Location_Type int64 Item_Outlet_Sales float64 Outlet_Years int64 Outlet_Type_Grocery Store int64 Outlet_Type_Supermarket Type1 int64 Outlet_Type_Supermarket Type2 int64 Outlet_Type_Supermarket Type3 int64 Item_Category_Drinks int64 Item_Category_Food int64 Item_Category_Non_Consumable int64 dtype: object
# removing the Item_Identifier and Outlet_Identifier since these are just the unique values
# data = data.drop(['Item_Identifier', 'Outlet_Identifier'], axis=1)
data = data.drop(['Item_Identifier', 'Outlet_Identifier'], axis=1)
# looking at the shape of the data
data.shape
(8523, 15)
# separating the independent and dependent variables
# storing all the independent variables as X
X = data.drop('Item_Outlet_Sales', axis=1)
# storing the dependent variable as y
y = data['Item_Outlet_Sales'].values
# shape of independent and dependent variables
X.shape, y.shape
((8523, 14), (8523,))
In order to check how well the model will perform on unseen data, we'll be creating a small validation set out of this training set.
For simplification, we have used test data and validation data interchangeably. In practice, we do not have the actual labels of test data present, so we separate validation data from train data in order to evaluate our algorithm on data it has not seen before.
# Creating training and validation set
# stratify will make sure that the distribution of classes in train and validation set it similar
# random state to regenerate the same train and validation set
# test size 0.2 will keep 20% data in validation and remaining 80% in train set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 10, test_size = 0.2)
To center the data (make it have zero mean and unit standard error), you subtract the mean and then divide the result by the standard deviation:
You do that on the training set of data. But then you have to apply the same transformation to your testing set (e.g. in cross-validation), or to newly obtained examples before forecast. But you have to use the exact same two parameters μ and σ (values) that you used for centering the training set.
Hence, every sklearn's transform's fit() just calculates the parameters (e.g. μ and σ in case of StandardScaler) and saves them as an internal object's state. Afterwards, you can call its transform() method to apply the transformation to any particular set of examples.
fit_transform() joins these two steps and is used for the initial fitting of parameters on the training set x, while also returning the transformed x′. Internally, the transformer object just calls first fit() and then transform() on the same data.
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
sc_y = StandardScaler()
X_train2 = sc_x.fit_transform(X_train)
y_train2 = sc_y.fit_transform(y_train.reshape(-1,1))
X_test2 = sc_x.transform(X_test)
y_test2 = sc_y.transform(y_test.reshape(-1,1))
(X_train2.shape, y_train2.shape), (X_test2.shape, y_test2.shape)
(((6818, 14), (6818, 1)), ((1705, 14), (1705, 1)))
# shape of training and validation set
(X_train2.shape, y_train2.shape), (X_test2.shape, y_test2.shape)
(((6818, 14), (6818, 1)), ((1705, 14), (1705, 1)))
# Measuring Accuracy
from sklearn.metrics import accuracy_score, r2_score, mean_squared_error
from sklearn.model_selection import cross_val_score
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
## Prepare metrics comparison dataframe
model_names = ['LR', 'DT', 'RF', 'XGB', 'NN']
model_metrics = ['Accuracy', 'R2', 'RMSE']
df_compare = pd.DataFrame(index = model_names, columns = model_metrics)
## Prepare prediction comparison dataframe
y_test2_ = y_test2.copy()
y_test2_ = sc_y.inverse_transform(y_test2)
df_pred = pd.DataFrame(columns = ['Actual'] + model_names)
df_pred['Actual'] = y_test2_.flatten()
models = zip(
model_names,
[
LinearRegression(),
DecisionTreeRegressor(max_depth = 15, min_samples_leaf = 100),
RandomForestRegressor(n_estimators = 100,max_depth = 6, min_samples_leaf = 50,n_jobs = 4),
XGBRegressor(n_estimators = 130, learning_rate = 0.05)
]
)
for name, model in models:
model.fit(X_train2, y_train2)
utils.saveModelToFile('./model/model_{}.pkl'.format(name), model)
# Predicting the test set results
y_pred = model.predict(X_test2)
y_pred_ = y_pred.copy()
y_pred_ = sc_y.inverse_transform(y_pred)
# Perform cross-validation:
#cv_score = cross_val_score(model, X_train2, y_train2, cv=5, scoring = 'neg_mean_squared_error')
#print('CV Scores: {}'.format(np.sqrt(np.abs(cv_score))))
#print("CV Score : Mean - %.4g | Std - %.4g | Min - %.4g | Max - %.4g" % (np.mean(cv_score),np.std(cv_score), np.min(cv_score), np.max(cv_score)))
df_compare.loc[name, 'Accuracy'] = model.score(X_test2, y_test2)
df_compare.loc[name, 'R2'] = r2_score(y_test2_, y_pred_)
df_compare.loc[name, 'RMSE'] = np.sqrt(metrics.mean_squared_error(y_test2_, y_pred_))
df_pred[name] = y_pred_.flatten()
df_pred[name + '_Diff'] = df_pred[name] - df_pred['Actual']
df_compare
Accuracy | R2 | RMSE | |
---|---|---|---|
LR | 0.577368 | 0.577368 | 1120.07 |
DT | 0.601324 | 0.601324 | 1087.86 |
RF | 0.610356 | 0.610356 | 1075.46 |
XGB | 0.588911 | 0.588911 | 1104.66 |
NN | NaN | NaN | NaN |
df_pred.head()
Actual | LR | DT | RF | XGB | NN | LR_Diff | DT_Diff | RF_Diff | XGB_Diff | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 3649.2498 | 4152.777059 | 4177.126769 | 4362.486917 | 4636.114258 | NaN | 503.527259 | 527.876969 | 713.237117 | 986.864458 |
1 | 1845.5976 | 1748.367116 | 1609.727606 | 1661.258917 | 1722.172852 | NaN | -97.230484 | -235.869994 | -184.338683 | -123.424748 |
2 | 2675.1844 | 3111.527183 | 3277.232870 | 3152.736701 | 3145.410400 | NaN | 436.342783 | 602.048470 | 477.552301 | 470.226000 |
3 | 675.7870 | 1406.538312 | 1698.317841 | 1550.695218 | 1427.145996 | NaN | 730.751312 | 1022.530841 | 874.908218 | 751.358996 |
4 | 3755.1120 | 3074.800687 | 2780.539010 | 3026.568030 | 2896.585693 | NaN | -680.311313 | -974.572990 | -728.543970 | -858.526307 |
Since Keras uses TensorFlow in the backend, we also check TensorFlow's version.
# checking the version of keras
import keras
print(keras.__version__)
# checking the version of tensorflow
import tensorflow as tf
print(tf.__version__)
2.4.3 2.4.1
# importing the sequential model
from keras.models import Sequential
# importing different layers from keras (Dense layers are for HIDDEN layers and the OUTPUT layer)
from keras.layers import InputLayer, Dense, Dropout
from keras.optimizers import SGD
print('Number of input neurons (number of features): {}'.format(X_train2.shape[1]))
# since Big Mart Sales prediction is a regression problem, we will have SINGLE neuron in the output layer
print('Number of output neurons (number of features): {}'.format(1))
Number of input neurons (number of features): 14 Number of output neurons (number of features): 1
import numpy
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasRegressor
# defining input neurons
input_neurons = X_train2.shape[1]
# define number of output neurons
output_neurons = 1
# for now I have picked relu as an activation function for hidden layers, you can change it as well
# since it is a regression problem, I have used linear activation function in the final layer
# let's create a function that creates the model (required for KerasClassifier)
# while accepting the hyperparameters we want to tune
# we also pass some default values such as optimizer='rmsprop'
def create_model(learning_rate = 0.1, init_mode = 'normal',
hidden_layer_count = 2, hidden_neuron_count_1 = 128, hidden_neuron_count_2 = 64):
# define model
model = Sequential()
model.add(InputLayer(input_shape = (input_neurons,)))
for i in range(hidden_layer_count):
nc = hidden_neuron_count_1 if i == 0 else hidden_neuron_count_2
model.add(Dense(units = nc, activation = tf.nn.relu, kernel_initializer = init_mode))
model.add(Dense(units = output_neurons, activation = 'linear'))
# compile model
optimizer = tf.optimizers.Adam(learning_rate = learning_rate)
model.compile(optimizer = optimizer, loss='mean_squared_error', metrics=['mse'])
return model
%%time
numpy.random.seed(7)
model_CV = KerasRegressor(build_fn = create_model, verbose = 1)
# define the grid search parameters
init_mode = ['normal']
batches = [512]
epochs = [30]
learning_rate = [0.1]
hidden_layer_count = [2]
hidden_neuron_count_1 = [128, 64, 32]
hidden_neuron_count_2 = [128, 64, 32]
# grid search for initializer, batch size and number of epochs
param_grid = dict(epochs = epochs, batch_size = batches, init_mode = init_mode, learning_rate = learning_rate,
hidden_layer_count = hidden_layer_count,
hidden_neuron_count_1 = hidden_neuron_count_1, hidden_neuron_count_2 = hidden_neuron_count_2)
grid = GridSearchCV(estimator = model_CV, param_grid = param_grid, cv = 3)
grid_result = grid.fit(X_train2, y_train2)
Epoch 1/30 9/9 [==============================] - 1s 3ms/step - loss: 26.4201 - mse: 26.4201 Epoch 2/30 9/9 [==============================] - 0s 3ms/step - loss: 1.5391 - mse: 1.5391 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8300 - mse: 0.8300 Epoch 4/30 9/9 [==============================] - 0s 4ms/step - loss: 0.5634 - mse: 0.5634 Epoch 5/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4963 - mse: 0.4963 Epoch 6/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4514 - mse: 0.4514 Epoch 7/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4227 - mse: 0.4227 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4107 - mse: 0.4107 Epoch 9/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4088 - mse: 0.4088 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3986 - mse: 0.3986 Epoch 11/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4081 - mse: 0.4081 Epoch 12/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3998 - mse: 0.3998 Epoch 13/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3689 - mse: 0.3689 Epoch 14/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3931 - mse: 0.3931 Epoch 15/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3871 - mse: 0.3871 Epoch 16/30 9/9 [==============================] - 0s 5ms/step - loss: 0.3953 - mse: 0.3953 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3858 - mse: 0.3858 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3848 - mse: 0.3848 Epoch 19/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3838 - mse: 0.3838 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3821 - mse: 0.3821 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3860 - mse: 0.3860 Epoch 22/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3897 - mse: 0.3897 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3759 - mse: 0.3759 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3754 - mse: 0.3754 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3950 - mse: 0.3950 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3768 - mse: 0.3768 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3869 - mse: 0.3869 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3879 - mse: 0.3879 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3761 - mse: 0.3761 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3705 - mse: 0.3705 5/5 [==============================] - 0s 1ms/step - loss: 0.4576 - mse: 0.4576 Epoch 1/30 9/9 [==============================] - 1s 2ms/step - loss: 81.6031 - mse: 81.6031 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 2.3166 - mse: 2.3166 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 1.0764 - mse: 1.0764 Epoch 4/30 9/9 [==============================] - 0s 3ms/step - loss: 0.8516 - mse: 0.8516 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7108 - mse: 0.7108 Epoch 6/30 9/9 [==============================] - 0s 4ms/step - loss: 0.5201 - mse: 0.5201 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4849 - mse: 0.4849 Epoch 8/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4280 - mse: 0.4280 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4176 - mse: 0.4176 Epoch 10/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4241 - mse: 0.4241 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4176 - mse: 0.4176 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4070 - mse: 0.4070 Epoch 13/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4142 - mse: 0.4142 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4171 - mse: 0.4171 Epoch 15/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4112 - mse: 0.4112 Epoch 16/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4008 - mse: 0.4008 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3904 - mse: 0.3904 Epoch 18/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4161 - mse: 0.4161 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3899 - mse: 0.3899 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4002 - mse: 0.4002 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3821 - mse: 0.3821 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3770 - mse: 0.3770 Epoch 23/30 9/9 [==============================] - 0s 5ms/step - loss: 0.4144 - mse: 0.4144 Epoch 24/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3962 - mse: 0.3962 Epoch 25/30 9/9 [==============================] - 0s 7ms/step - loss: 0.3920 - mse: 0.3920 Epoch 26/30 9/9 [==============================] - 0s 6ms/step - loss: 0.3861 - mse: 0.3861 Epoch 27/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3858 - mse: 0.3858 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3881 - mse: 0.3881 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3876 - mse: 0.3876 Epoch 30/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3886 - mse: 0.3886 5/5 [==============================] - 0s 1ms/step - loss: 0.4332 - mse: 0.4332 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 63.4135 - mse: 63.4135 Epoch 2/30 9/9 [==============================] - 0s 3ms/step - loss: 1.4873 - mse: 1.4873 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7444 - mse: 0.7444 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5329 - mse: 0.5329 Epoch 5/30 9/9 [==============================] - 0s 3ms/step - loss: 0.5183 - mse: 0.5183 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4654 - mse: 0.4654 Epoch 7/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4368 - mse: 0.4368 Epoch 8/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4508 - mse: 0.4508 Epoch 9/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4458 - mse: 0.4458 Epoch 10/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4638 - mse: 0.4638 Epoch 11/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4520 - mse: 0.4520 Epoch 12/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4065 - mse: 0.4065 Epoch 13/30 9/9 [==============================] - 0s 5ms/step - loss: 0.4203 - mse: 0.4203 Epoch 14/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4425 - mse: 0.4425 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4156 - mse: 0.4156 Epoch 16/30 9/9 [==============================] - ETA: 0s - loss: 0.4438 - mse: 0.443 - 0s 3ms/step - loss: 0.4415 - mse: 0.4415 Epoch 17/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4220 - mse: 0.4220 Epoch 18/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4502 - mse: 0.4502 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4164 - mse: 0.4164 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4041 - mse: 0.4041 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4017 - mse: 0.4017 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3896 - mse: 0.3896 Epoch 23/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4034 - mse: 0.4034 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4007 - mse: 0.4007 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3942 - mse: 0.3942 Epoch 26/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4012 - mse: 0.4012 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3979 - mse: 0.3979 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3984 - mse: 0.3984 Epoch 29/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4026 - mse: 0.4026 Epoch 30/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3844 - mse: 0.3844 5/5 [==============================] - 0s 1ms/step - loss: 0.4157 - mse: 0.4157 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 33.7903 - mse: 33.7903 Epoch 2/30 9/9 [==============================] - 0s 3ms/step - loss: 0.8773 - mse: 0.8773 Epoch 3/30 9/9 [==============================] - 0s 3ms/step - loss: 0.6185 - mse: 0.6185 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5403 - mse: 0.5403 Epoch 5/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4611 - mse: 0.4611 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4472 - mse: 0.4472 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4333 - mse: 0.4333 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4235 - mse: 0.4235 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4510 - mse: 0.4510 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4322 - mse: 0.4322 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3940 - mse: 0.3940 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4377 - mse: 0.4377 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4148 - mse: 0.4148 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3997 - mse: 0.3997 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4189 - mse: 0.4189 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4106 - mse: 0.4106 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3961 - mse: 0.3961 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3985 - mse: 0.3985 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3959 - mse: 0.3959 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3894 - mse: 0.3894 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3913 - mse: 0.3913 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4037 - mse: 0.4037 Epoch 23/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4091 - mse: 0.4091 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3972 - mse: 0.3972 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3746 - mse: 0.3746 Epoch 26/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3838 - mse: 0.3838 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3882 - mse: 0.3882 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3991 - mse: 0.3991 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3753 - mse: 0.3753 Epoch 30/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3933 - mse: 0.3933 5/5 [==============================] - 0s 1ms/step - loss: 0.4413 - mse: 0.4413 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 6.9880 - mse: 6.9880 Epoch 2/30 9/9 [==============================] - 0s 3ms/step - loss: 1.0030 - mse: 1.0030 Epoch 3/30 9/9 [==============================] - 0s 3ms/step - loss: 0.5727 - mse: 0.5727 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5001 - mse: 0.5001 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4255 - mse: 0.4255 Epoch 6/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4416 - mse: 0.4416 Epoch 7/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4174 - mse: 0.4174 Epoch 8/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3812 - mse: 0.3812 Epoch 9/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3995 - mse: 0.3995 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4123 - mse: 0.4123 Epoch 11/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4103 - mse: 0.4103 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4057 - mse: 0.4057 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4106 - mse: 0.4106 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3892 - mse: 0.3892 Epoch 15/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3932 - mse: 0.3932 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3943 - mse: 0.3943 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3950 - mse: 0.3950 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3921 - mse: 0.3921 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3766 - mse: 0.3766 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3858 - mse: 0.3858 Epoch 21/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3934 - mse: 0.3934 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3957 - mse: 0.3957 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3910 - mse: 0.3910 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3988 - mse: 0.3988 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3711 - mse: 0.3711 Epoch 26/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4045 - mse: 0.4045 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3957 - mse: 0.3957 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4129 - mse: 0.4129 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4169 - mse: 0.4169 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3802 - mse: 0.3802 5/5 [==============================] - 0s 1ms/step - loss: 0.4224 - mse: 0.4224 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 14.6448 - mse: 14.6448 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 1.1654 - mse: 1.1654 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6472 - mse: 0.6472 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5101 - mse: 0.5101 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4499 - mse: 0.4499 Epoch 6/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4189 - mse: 0.4189 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4237 - mse: 0.4237 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4509 - mse: 0.4509 Epoch 9/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4182 - mse: 0.4182 Epoch 10/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4134 - mse: 0.4134 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4290 - mse: 0.4290 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4129 - mse: 0.4129 Epoch 13/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3876 - mse: 0.3876 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4193 - mse: 0.4193 Epoch 15/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4115 - mse: 0.4115 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4023 - mse: 0.4023 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4065 - mse: 0.4065 Epoch 18/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4019 - mse: 0.4019 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4078 - mse: 0.4078 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4059 - mse: 0.4059 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4320 - mse: 0.4320 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4160 - mse: 0.4160 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4131 - mse: 0.4131 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4121 - mse: 0.4121 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4170 - mse: 0.4170 Epoch 26/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4267 - mse: 0.4267 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4032 - mse: 0.4032 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3914 - mse: 0.3914 Epoch 29/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4157 - mse: 0.4157 Epoch 30/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4283 - mse: 0.4283 5/5 [==============================] - 0s 1ms/step - loss: 0.4076 - mse: 0.4076 Epoch 1/30 9/9 [==============================] - 1s 2ms/step - loss: 14.5953 - mse: 14.5953 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8598 - mse: 0.8598 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6759 - mse: 0.6759 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6409 - mse: 0.6409 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5909 - mse: 0.5909 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5382 - mse: 0.5382 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4739 - mse: 0.4739 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4430 - mse: 0.4430 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4355 - mse: 0.4355 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4041 - mse: 0.4041 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4023 - mse: 0.4023 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4017 - mse: 0.4017 Epoch 13/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3977 - mse: 0.3977 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4000 - mse: 0.4000 Epoch 15/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3837 - mse: 0.3837 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3908 - mse: 0.3908 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4025 - mse: 0.4025 Epoch 18/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4052 - mse: 0.4052 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3983 - mse: 0.3983 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3903 - mse: 0.3903 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3785 - mse: 0.3785 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3720 - mse: 0.3720 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3799 - mse: 0.3799 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4175 - mse: 0.4175 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3702 - mse: 0.3702 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4095 - mse: 0.4095 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4021 - mse: 0.4021 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4060 - mse: 0.4060 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4147 - mse: 0.4147 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4045 - mse: 0.4045 5/5 [==============================] - 0s 2ms/step - loss: 0.4422 - mse: 0.4422 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 15.1882 - mse: 15.1882 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 1.1027 - mse: 1.1027 Epoch 3/30 9/9 [==============================] - 0s 3ms/step - loss: 0.9999 - mse: 0.9999 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8238 - mse: 0.8238 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7718 - mse: 0.7718 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6551 - mse: 0.6551 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6389 - mse: 0.6389 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6111 - mse: 0.6111 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5845 - mse: 0.5845 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5468 - mse: 0.5468 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4998 - mse: 0.4998 Epoch 12/30 9/9 [==============================] - 0s 3ms/step - loss: 0.5205 - mse: 0.5205 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5022 - mse: 0.5022 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4704 - mse: 0.4704 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4552 - mse: 0.4552 Epoch 16/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4378 - mse: 0.4378 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4268 - mse: 0.4268 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4469 - mse: 0.4469 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4514 - mse: 0.4514 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4303 - mse: 0.4303 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4205 - mse: 0.4205 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4317 - mse: 0.4317 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4359 - mse: 0.4359 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4200 - mse: 0.4200 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4136 - mse: 0.4136 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4157 - mse: 0.4157 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4273 - mse: 0.4273 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4232 - mse: 0.4232 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4098 - mse: 0.4098 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4146 - mse: 0.4146 5/5 [==============================] - 0s 2ms/step - loss: 0.4430 - mse: 0.4430 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 4.0149 - mse: 4.0149 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7869 - mse: 0.7869 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6101 - mse: 0.6101 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5115 - mse: 0.5115 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4314 - mse: 0.4314 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4509 - mse: 0.4509 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4300 - mse: 0.4300 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4680 - mse: 0.4680 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4152 - mse: 0.4152 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3938 - mse: 0.3938 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3955 - mse: 0.3955 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4114 - mse: 0.4114 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4125 - mse: 0.4125 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4171 - mse: 0.4171 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4020 - mse: 0.4020 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3987 - mse: 0.3987 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4003 - mse: 0.4003 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3868 - mse: 0.3868 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3733 - mse: 0.3733 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3933 - mse: 0.3933 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3975 - mse: 0.3975 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4069 - mse: 0.4069 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3968 - mse: 0.3968 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3783 - mse: 0.3783 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3796 - mse: 0.3796 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3950 - mse: 0.3950 Epoch 27/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4020 - mse: 0.4020 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4033 - mse: 0.4033 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4015 - mse: 0.4015 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4171 - mse: 0.4171 5/5 [==============================] - 0s 2ms/step - loss: 0.4059 - mse: 0.4059 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 23.2689 - mse: 23.2689 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7934 - mse: 0.7934 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5980 - mse: 0.5980 Epoch 4/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4533 - mse: 0.4533 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4216 - mse: 0.4216 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4159 - mse: 0.4159 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4032 - mse: 0.4032 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3951 - mse: 0.3951 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3821 - mse: 0.3821 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4165 - mse: 0.4165 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4688 - mse: 0.4688 Epoch 12/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4071 - mse: 0.4071 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3930 - mse: 0.3930 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3852 - mse: 0.3852 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3844 - mse: 0.3844 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3964 - mse: 0.3964 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4072 - mse: 0.4072 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3882 - mse: 0.3882 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4289 - mse: 0.4289 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4015 - mse: 0.4015 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4145 - mse: 0.4145 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4021 - mse: 0.4021 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4208 - mse: 0.4208 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4180 - mse: 0.4180 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3955 - mse: 0.3955 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3625 - mse: 0.3625 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3895 - mse: 0.3895 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3889 - mse: 0.3889 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3905 - mse: 0.3905 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3924 - mse: 0.3924 5/5 [==============================] - 0s 1ms/step - loss: 0.4401 - mse: 0.4401 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 27.4482 - mse: 27.4482 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8684 - mse: 0.8684 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6600 - mse: 0.6600 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5211 - mse: 0.5211 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5295 - mse: 0.5295 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4351 - mse: 0.4351 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4237 - mse: 0.4237 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4519 - mse: 0.4519 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4650 - mse: 0.4650 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4174 - mse: 0.4174 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4255 - mse: 0.4255 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4111 - mse: 0.4111 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3895 - mse: 0.3895 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3920 - mse: 0.3920 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4073 - mse: 0.4073 Epoch 16/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3848 - mse: 0.3848 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4022 - mse: 0.4022 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3953 - mse: 0.3953 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3918 - mse: 0.3918 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3976 - mse: 0.3976 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4148 - mse: 0.4148 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3981 - mse: 0.3981 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4063 - mse: 0.4063 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3849 - mse: 0.3849 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3882 - mse: 0.3882 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3909 - mse: 0.3909 Epoch 27/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3935 - mse: 0.3935 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3899 - mse: 0.3899 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3857 - mse: 0.3857 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3868 - mse: 0.3868 5/5 [==============================] - 0s 1ms/step - loss: 0.4217 - mse: 0.4217 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 19.0102 - mse: 19.0102 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.9181 - mse: 0.9181 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5766 - mse: 0.5766 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5054 - mse: 0.5054 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4644 - mse: 0.4644 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4550 - mse: 0.4550 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4241 - mse: 0.4241 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4199 - mse: 0.4199 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4352 - mse: 0.4352 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4372 - mse: 0.4372 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4175 - mse: 0.4175 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4291 - mse: 0.4291 Epoch 13/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4098 - mse: 0.4098 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4070 - mse: 0.4070 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4155 - mse: 0.4155 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4028 - mse: 0.4028 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3987 - mse: 0.3987 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4241 - mse: 0.4241 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4040 - mse: 0.4040 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4035 - mse: 0.4035 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4021 - mse: 0.4021 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3943 - mse: 0.3943 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4155 - mse: 0.4155 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4308 - mse: 0.4308 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4254 - mse: 0.4254 Epoch 26/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3936 - mse: 0.3936 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4042 - mse: 0.4042 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4226 - mse: 0.4226 Epoch 29/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3745 - mse: 0.3745 Epoch 30/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4005 - mse: 0.4005 5/5 [==============================] - 0s 1ms/step - loss: 0.4020 - mse: 0.4020 Epoch 1/30 9/9 [==============================] - 1s 2ms/step - loss: 6.8684 - mse: 6.8684 Epoch 2/30 9/9 [==============================] - 0s 3ms/step - loss: 0.8078 - mse: 0.8078 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5353 - mse: 0.5353 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4402 - mse: 0.4402 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4271 - mse: 0.4271 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4227 - mse: 0.4227 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3989 - mse: 0.3989 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4021 - mse: 0.4021 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3952 - mse: 0.3952 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4093 - mse: 0.4093 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3977 - mse: 0.3977 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3968 - mse: 0.3968 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3946 - mse: 0.3946 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4117 - mse: 0.4117 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3986 - mse: 0.3986 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4035 - mse: 0.4035 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3955 - mse: 0.3955 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4086 - mse: 0.4086 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3939 - mse: 0.3939 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4058 - mse: 0.4058 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3971 - mse: 0.3971 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3827 - mse: 0.3827 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3825 - mse: 0.3825 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3862 - mse: 0.3862 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3861 - mse: 0.3861 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3845 - mse: 0.3845 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3895 - mse: 0.3895 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3791 - mse: 0.3791 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4108 - mse: 0.4108 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3897 - mse: 0.3897 5/5 [==============================] - 0s 1000us/step - loss: 0.4417 - mse: 0.4417 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 14.6562 - mse: 14.6562 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7011 - mse: 0.7011 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5252 - mse: 0.5252 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4742 - mse: 0.4742 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4474 - mse: 0.4474 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4348 - mse: 0.4348 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4063 - mse: 0.4063 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4273 - mse: 0.4273 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4034 - mse: 0.4034 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4152 - mse: 0.4152 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4093 - mse: 0.4093 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4021 - mse: 0.4021 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4135 - mse: 0.4135 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4073 - mse: 0.4073 Epoch 15/30 9/9 [==============================] - ETA: 0s - loss: 0.3611 - mse: 0.361 - 0s 2ms/step - loss: 0.3887 - mse: 0.3887 Epoch 16/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4002 - mse: 0.4002 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3970 - mse: 0.3970 Epoch 18/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4191 - mse: 0.4191 Epoch 19/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4260 - mse: 0.4260 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3915 - mse: 0.3915 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4012 - mse: 0.4012 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4224 - mse: 0.4224 Epoch 23/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4016 - mse: 0.4016 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4342 - mse: 0.4342 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4526 - mse: 0.4526 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4112 - mse: 0.4112 Epoch 27/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3962 - mse: 0.3962 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3952 - mse: 0.3952 Epoch 29/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3947 - mse: 0.3947 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4270 - mse: 0.4270 5/5 [==============================] - 0s 1ms/step - loss: 0.4080 - mse: 0.4080 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 3.5143 - mse: 3.5143 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7506 - mse: 0.7506 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4894 - mse: 0.4894 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4308 - mse: 0.4308 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4246 - mse: 0.4246 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4327 - mse: 0.4327 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4197 - mse: 0.4197 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4158 - mse: 0.4158 Epoch 9/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4240 - mse: 0.4240 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4373 - mse: 0.4373 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4096 - mse: 0.4096 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4042 - mse: 0.4042 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4204 - mse: 0.4204 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4053 - mse: 0.4053 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4092 - mse: 0.4092 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4087 - mse: 0.4087 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4140 - mse: 0.4140 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4111 - mse: 0.4111 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3842 - mse: 0.3842 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4005 - mse: 0.4005 Epoch 21/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4121 - mse: 0.4121 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4027 - mse: 0.4027 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3890 - mse: 0.3890 Epoch 24/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3947 - mse: 0.3947 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3888 - mse: 0.3888 Epoch 26/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4020 - mse: 0.4020 Epoch 27/30 9/9 [==============================] - 0s 4ms/step - loss: 0.3795 - mse: 0.3795 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3976 - mse: 0.3976 Epoch 29/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4029 - mse: 0.4029 Epoch 30/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4048 - mse: 0.4048 5/5 [==============================] - 0s 1ms/step - loss: 0.4230 - mse: 0.4230 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 5.9634 - mse: 5.9634 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 1.0624 - mse: 1.0624 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8715 - mse: 0.8715 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7342 - mse: 0.7342 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6563 - mse: 0.6563 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4610 - mse: 0.4610 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4792 - mse: 0.4792 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4136 - mse: 0.4136 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4267 - mse: 0.4267 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4132 - mse: 0.4132 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3952 - mse: 0.3952 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3950 - mse: 0.3950 Epoch 13/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4121 - mse: 0.4121 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4039 - mse: 0.4039 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4064 - mse: 0.4064 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4174 - mse: 0.4174 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4285 - mse: 0.4285 Epoch 18/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3987 - mse: 0.3987 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3757 - mse: 0.3757 Epoch 20/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4002 - mse: 0.4002 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3929 - mse: 0.3929 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3880 - mse: 0.3880 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3829 - mse: 0.3829 Epoch 24/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4109 - mse: 0.4109 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4011 - mse: 0.4011 Epoch 26/30 9/9 [==============================] - ETA: 0s - loss: 0.3585 - mse: 0.358 - 0s 2ms/step - loss: 0.3947 - mse: 0.3947 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3908 - mse: 0.3908 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3966 - mse: 0.3966 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3872 - mse: 0.3872 Epoch 30/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4020 - mse: 0.4020 5/5 [==============================] - 0s 1ms/step - loss: 0.4532 - mse: 0.4532 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 5.8351 - mse: 5.8351 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.9645 - mse: 0.9645 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8913 - mse: 0.8913 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7838 - mse: 0.7838 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6635 - mse: 0.6635 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5852 - mse: 0.5852 Epoch 7/30 9/9 [==============================] - 0s 1ms/step - loss: 0.5247 - mse: 0.5247 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5041 - mse: 0.5041 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4881 - mse: 0.4881 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4622 - mse: 0.4622 Epoch 11/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4323 - mse: 0.4323 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4408 - mse: 0.4408 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4382 - mse: 0.4382 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4479 - mse: 0.4479 Epoch 15/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4425 - mse: 0.4425 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4466 - mse: 0.4466 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4240 - mse: 0.4240 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4451 - mse: 0.4451 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4198 - mse: 0.4198 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4143 - mse: 0.4143 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4059 - mse: 0.4059 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4271 - mse: 0.4271 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4243 - mse: 0.4243 Epoch 24/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4197 - mse: 0.4197 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4116 - mse: 0.4116 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4134 - mse: 0.4134 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4127 - mse: 0.4127 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4082 - mse: 0.4082 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4057 - mse: 0.4057 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4005 - mse: 0.4005 5/5 [==============================] - 0s 1ms/step - loss: 0.4379 - mse: 0.4379 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 3.3587 - mse: 3.3587 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.5932 - mse: 0.5932 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4803 - mse: 0.4803 Epoch 4/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4442 - mse: 0.4442 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4459 - mse: 0.4459 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4481 - mse: 0.4481 Epoch 7/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4305 - mse: 0.4305 Epoch 8/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4134 - mse: 0.4134 Epoch 9/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4121 - mse: 0.4121 Epoch 10/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4001 - mse: 0.4001 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4024 - mse: 0.4024 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4174 - mse: 0.4174 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4123 - mse: 0.4123 Epoch 14/30 9/9 [==============================] - 0s 4ms/step - loss: 0.4390 - mse: 0.4390 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4261 - mse: 0.4261 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3914 - mse: 0.3914 Epoch 17/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3912 - mse: 0.3912 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3882 - mse: 0.3882 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3792 - mse: 0.3792 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3999 - mse: 0.3999 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3990 - mse: 0.3990 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3865 - mse: 0.3865 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3983 - mse: 0.3983 Epoch 24/30 9/9 [==============================] - 0s 6ms/step - loss: 0.3775 - mse: 0.3775 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3943 - mse: 0.3943 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4102 - mse: 0.4102 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4082 - mse: 0.4082 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3981 - mse: 0.3981 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3739 - mse: 0.3739 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3885 - mse: 0.3885 5/5 [==============================] - 0s 1ms/step - loss: 0.3987 - mse: 0.3987 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 4.1783 - mse: 4.1783 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8306 - mse: 0.8306 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5044 - mse: 0.5044 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4396 - mse: 0.4396 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4088 - mse: 0.4088 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4139 - mse: 0.4139 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4042 - mse: 0.4042 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3946 - mse: 0.3946 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3956 - mse: 0.3956 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3881 - mse: 0.3881 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3890 - mse: 0.3890 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3934 - mse: 0.3934 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3975 - mse: 0.3975 Epoch 14/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3868 - mse: 0.3868 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3910 - mse: 0.3910 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3767 - mse: 0.3767 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3932 - mse: 0.3932 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3897 - mse: 0.3897 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3762 - mse: 0.3762 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3764 - mse: 0.3764 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3585 - mse: 0.3585 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3926 - mse: 0.3926 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3887 - mse: 0.3887 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3792 - mse: 0.3792 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3780 - mse: 0.3780 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3660 - mse: 0.3660 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3783 - mse: 0.3783 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3774 - mse: 0.3774 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3918 - mse: 0.3918 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3842 - mse: 0.3842 5/5 [==============================] - 0s 1ms/step - loss: 0.4342 - mse: 0.4342 Epoch 1/30 9/9 [==============================] - 0s 2ms/step - loss: 12.3966 - mse: 12.3966 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8346 - mse: 0.8346 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5475 - mse: 0.5475 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4504 - mse: 0.4504 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4458 - mse: 0.4458 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4362 - mse: 0.4362 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4084 - mse: 0.4084 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4022 - mse: 0.4022 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4479 - mse: 0.4479 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4154 - mse: 0.4154 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4076 - mse: 0.4076 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3978 - mse: 0.3978 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4058 - mse: 0.4058 Epoch 14/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4169 - mse: 0.4169 Epoch 15/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4108 - mse: 0.4108 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4283 - mse: 0.4283 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3923 - mse: 0.3923 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4042 - mse: 0.4042 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4055 - mse: 0.4055 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4067 - mse: 0.4067 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4040 - mse: 0.4040 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4169 - mse: 0.4169 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4099 - mse: 0.4099 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3880 - mse: 0.3880 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4045 - mse: 0.4045 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4073 - mse: 0.4073 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3976 - mse: 0.3976 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3964 - mse: 0.3964 Epoch 29/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4031 - mse: 0.4031 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3867 - mse: 0.3867 5/5 [==============================] - 0s 1ms/step - loss: 0.4274 - mse: 0.4274 Epoch 1/30 9/9 [==============================] - 1s 2ms/step - loss: 4.1752 - mse: 4.1752 Epoch 2/30 9/9 [==============================] - 0s 2ms/step - loss: 0.9544 - mse: 0.9544 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7765 - mse: 0.7765 Epoch 4/30 9/9 [==============================] - 0s 3ms/step - loss: 0.5567 - mse: 0.5567 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5091 - mse: 0.5091 Epoch 6/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4890 - mse: 0.4890 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4466 - mse: 0.4466 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4253 - mse: 0.4253 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4155 - mse: 0.4155 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4186 - mse: 0.4186 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3937 - mse: 0.3937 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3978 - mse: 0.3978 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4011 - mse: 0.4011 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4008 - mse: 0.4008 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4374 - mse: 0.4374 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4339 - mse: 0.4339 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4134 - mse: 0.4134 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4070 - mse: 0.4070 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4124 - mse: 0.4124 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3972 - mse: 0.3972 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4012 - mse: 0.4012 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4103 - mse: 0.4103 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4118 - mse: 0.4118 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4118 - mse: 0.4118 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4081 - mse: 0.4081 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3977 - mse: 0.3977 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3971 - mse: 0.3971 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3968 - mse: 0.3968 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4005 - mse: 0.4005 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3943 - mse: 0.3943 5/5 [==============================] - 0s 1ms/step - loss: 0.4031 - mse: 0.4031 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 4.0333 - mse: 4.0333 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.7898 - mse: 0.7898 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4810 - mse: 0.4810 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4391 - mse: 0.4391 Epoch 5/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4244 - mse: 0.4244 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3980 - mse: 0.3980 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3928 - mse: 0.3928 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4117 - mse: 0.4117 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4063 - mse: 0.4063 Epoch 10/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3887 - mse: 0.3887 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3985 - mse: 0.3985 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3825 - mse: 0.3825 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3921 - mse: 0.3921 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3986 - mse: 0.3986 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3846 - mse: 0.3846 Epoch 16/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3831 - mse: 0.3831 Epoch 17/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3976 - mse: 0.3976 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3836 - mse: 0.3836 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3905 - mse: 0.3905 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3982 - mse: 0.3982 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3797 - mse: 0.3797 Epoch 22/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3858 - mse: 0.3858 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3765 - mse: 0.3765 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3881 - mse: 0.3881 Epoch 25/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3916 - mse: 0.3916 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3855 - mse: 0.3855 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4150 - mse: 0.4150 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3975 - mse: 0.3975 Epoch 29/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3917 - mse: 0.3917 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3796 - mse: 0.3796 5/5 [==============================] - 0s 1000us/step - loss: 0.4364 - mse: 0.4364 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 6.0507 - mse: 6.0507 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.9390 - mse: 0.9390 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5467 - mse: 0.5467 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4808 - mse: 0.4808 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4554 - mse: 0.4554 Epoch 6/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4434 - mse: 0.4434 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4191 - mse: 0.4191 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4164 - mse: 0.4164 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4148 - mse: 0.4148 Epoch 10/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4146 - mse: 0.4146 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4092 - mse: 0.4092 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4061 - mse: 0.4061 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4066 - mse: 0.4066 Epoch 14/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3870 - mse: 0.3870 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4145 - mse: 0.4145 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4201 - mse: 0.4201 Epoch 17/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3850 - mse: 0.3850 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4128 - mse: 0.4128 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3794 - mse: 0.3794 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3969 - mse: 0.3969 Epoch 21/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4015 - mse: 0.4015 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3981 - mse: 0.3981 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3830 - mse: 0.3830 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4049 - mse: 0.4049 Epoch 25/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3987 - mse: 0.3987 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4046 - mse: 0.4046 Epoch 27/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4013 - mse: 0.4013 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3894 - mse: 0.3894 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3835 - mse: 0.3835 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4197 - mse: 0.4197 5/5 [==============================] - 0s 1ms/step - loss: 0.4089 - mse: 0.4089 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 1.8306 - mse: 1.8306 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.5275 - mse: 0.5275 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4614 - mse: 0.4614 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4599 - mse: 0.4599 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4196 - mse: 0.4196 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4261 - mse: 0.4261 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4066 - mse: 0.4066 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4043 - mse: 0.4043 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4346 - mse: 0.4346 Epoch 10/30 9/9 [==============================] - ETA: 0s - loss: 0.4268 - mse: 0.426 - 0s 2ms/step - loss: 0.4289 - mse: 0.4289 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4179 - mse: 0.4179 Epoch 12/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4135 - mse: 0.4135 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4116 - mse: 0.4116 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4173 - mse: 0.4173 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4147 - mse: 0.4147 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3985 - mse: 0.3985 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3911 - mse: 0.3911 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3924 - mse: 0.3924 Epoch 19/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4181 - mse: 0.4181 Epoch 20/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4009 - mse: 0.4009 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4173 - mse: 0.4173 Epoch 22/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3888 - mse: 0.3888 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3946 - mse: 0.3946 Epoch 24/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3891 - mse: 0.3891 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3818 - mse: 0.3818 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3939 - mse: 0.3939 Epoch 27/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4123 - mse: 0.4123 Epoch 28/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3724 - mse: 0.3724 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3810 - mse: 0.3810 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3739 - mse: 0.3739 5/5 [==============================] - 0s 1ms/step - loss: 0.4087 - mse: 0.4087 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 2.5510 - mse: 2.5510 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.9477 - mse: 0.9477 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.6117 - mse: 0.6117 Epoch 4/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4388 - mse: 0.4388 Epoch 5/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4164 - mse: 0.4164 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4120 - mse: 0.4120 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3943 - mse: 0.3943 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3973 - mse: 0.3973 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3965 - mse: 0.3965 Epoch 10/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3829 - mse: 0.3829 Epoch 11/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3888 - mse: 0.3888 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3953 - mse: 0.3953 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3836 - mse: 0.3836 Epoch 14/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3868 - mse: 0.3868 Epoch 15/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3773 - mse: 0.3773 Epoch 16/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3990 - mse: 0.3990 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3999 - mse: 0.3999 Epoch 18/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3962 - mse: 0.3962 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4063 - mse: 0.4063 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3690 - mse: 0.3690 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3909 - mse: 0.3909 Epoch 22/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3905 - mse: 0.3905 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3878 - mse: 0.3878 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3906 - mse: 0.3906 Epoch 25/30 9/9 [==============================] - 0s 3ms/step - loss: 0.4179 - mse: 0.4179 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3846 - mse: 0.3846 Epoch 27/30 9/9 [==============================] - 0s 5ms/step - loss: 0.3714 - mse: 0.3714 Epoch 28/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3992 - mse: 0.3992 Epoch 29/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3800 - mse: 0.3800 Epoch 30/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3936 - mse: 0.3936 5/5 [==============================] - 0s 1ms/step - loss: 0.4452 - mse: 0.4452 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 2.7592 - mse: 2.7592 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 1.0239 - mse: 1.0239 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.8007 - mse: 0.8007 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.7355 - mse: 0.7355 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.5930 - mse: 0.5930 Epoch 6/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4889 - mse: 0.4889 Epoch 7/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4823 - mse: 0.4823 Epoch 8/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4671 - mse: 0.4671 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4357 - mse: 0.4357 Epoch 10/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4103 - mse: 0.4103 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4087 - mse: 0.4087 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4019 - mse: 0.4019 Epoch 13/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4009 - mse: 0.4009 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4084 - mse: 0.4084 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4087 - mse: 0.4087 Epoch 16/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4046 - mse: 0.4046 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4037 - mse: 0.4037 Epoch 18/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3966 - mse: 0.3966 Epoch 19/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4144 - mse: 0.4144 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3983 - mse: 0.3983 Epoch 21/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3831 - mse: 0.3831 Epoch 22/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4070 - mse: 0.4070 Epoch 23/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4057 - mse: 0.4057 Epoch 24/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3984 - mse: 0.3984 Epoch 25/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3899 - mse: 0.3899 Epoch 26/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4013 - mse: 0.4013 Epoch 27/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4082 - mse: 0.4082 Epoch 28/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3875 - mse: 0.3875 Epoch 29/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3950 - mse: 0.3950 Epoch 30/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4169 - mse: 0.4169 5/5 [==============================] - 0s 2ms/step - loss: 0.4049 - mse: 0.4049 Epoch 1/30 9/9 [==============================] - 0s 1ms/step - loss: 1.1800 - mse: 1.1800 Epoch 2/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4896 - mse: 0.4896 Epoch 3/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4259 - mse: 0.4259 Epoch 4/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4363 - mse: 0.4363 Epoch 5/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4137 - mse: 0.4137 Epoch 6/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4435 - mse: 0.4435 Epoch 7/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4133 - mse: 0.4133 Epoch 8/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4261 - mse: 0.4261 Epoch 9/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3963 - mse: 0.3963 Epoch 10/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4090 - mse: 0.4090 Epoch 11/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3993 - mse: 0.3993 Epoch 12/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4078 - mse: 0.4078 Epoch 13/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3966 - mse: 0.3966 Epoch 14/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3909 - mse: 0.3909 Epoch 15/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3890 - mse: 0.3890 Epoch 16/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3970 - mse: 0.3970 Epoch 17/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4130 - mse: 0.4130 Epoch 18/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4141 - mse: 0.4141 Epoch 19/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4155 - mse: 0.4155 Epoch 20/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4075 - mse: 0.4075 Epoch 21/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4067 - mse: 0.4067 Epoch 22/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3819 - mse: 0.3819 Epoch 23/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4146 - mse: 0.4146 Epoch 24/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3982 - mse: 0.3982 Epoch 25/30 9/9 [==============================] - 0s 2ms/step - loss: 0.4016 - mse: 0.4016 Epoch 26/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4047 - mse: 0.4047 Epoch 27/30 9/9 [==============================] - 0s 1ms/step - loss: 0.4006 - mse: 0.4006 Epoch 28/30 9/9 [==============================] - 0s 3ms/step - loss: 0.3790 - mse: 0.3790 Epoch 29/30 9/9 [==============================] - 0s 2ms/step - loss: 0.3766 - mse: 0.3766 Epoch 30/30 9/9 [==============================] - 0s 1ms/step - loss: 0.3977 - mse: 0.3977 5/5 [==============================] - 0s 3ms/step - loss: 0.4048 - mse: 0.4048 Epoch 1/30 14/14 [==============================] - 0s 2ms/step - loss: 3.6703 - mse: 3.6703 Epoch 2/30 14/14 [==============================] - 0s 3ms/step - loss: 0.5272 - mse: 0.5272 Epoch 3/30 14/14 [==============================] - 0s 7ms/step - loss: 0.4406 - mse: 0.4406 Epoch 4/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4399 - mse: 0.4399 Epoch 5/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4373 - mse: 0.4373 Epoch 6/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4214 - mse: 0.4214 Epoch 7/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4022 - mse: 0.4022 Epoch 8/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4105 - mse: 0.4105 Epoch 9/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4004 - mse: 0.4004 Epoch 10/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4101 - mse: 0.4101 Epoch 11/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4067 - mse: 0.4067 Epoch 12/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4169 - mse: 0.4169 Epoch 13/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3994 - mse: 0.3994 Epoch 14/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3908 - mse: 0.3908 Epoch 15/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4071 - mse: 0.4071 Epoch 16/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4076 - mse: 0.4076 Epoch 17/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4030 - mse: 0.4030 Epoch 18/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4023 - mse: 0.4023 Epoch 19/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4082 - mse: 0.4082 Epoch 20/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3908 - mse: 0.3908 Epoch 21/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3930 - mse: 0.3930 Epoch 22/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4042 - mse: 0.4042 Epoch 23/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4066 - mse: 0.4066 Epoch 24/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4012 - mse: 0.4012 Epoch 25/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4101 - mse: 0.4101 Epoch 26/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4265 - mse: 0.4265 Epoch 27/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3981 - mse: 0.3981 Epoch 28/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4018 - mse: 0.4018 Epoch 29/30 14/14 [==============================] - 0s 2ms/step - loss: 0.4040 - mse: 0.4040 Epoch 30/30 14/14 [==============================] - 0s 2ms/step - loss: 0.3985 - mse: 0.3985 Wall time: 41 s
# print results
print(f'Best mse for {grid_result.best_score_:.4} using {grid_result.best_params_}')
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print(f'mean={mean:.4}, std={stdev:.4} using {param}')
Best mse for -0.418 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 32, 'hidden_neuron_count_2': 64, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4355, std=0.01718 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 128, 'hidden_neuron_count_2': 128, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4238, std=0.01379 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 128, 'hidden_neuron_count_2': 64, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4304, std=0.01729 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 128, 'hidden_neuron_count_2': 32, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4213, std=0.01558 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 64, 'hidden_neuron_count_2': 128, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4243, std=0.0138 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 64, 'hidden_neuron_count_2': 64, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4299, std=0.02299 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 64, 'hidden_neuron_count_2': 32, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4216, std=0.01335 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 32, 'hidden_neuron_count_2': 128, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.418, std=0.01302 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 32, 'hidden_neuron_count_2': 64, 'init_mode': 'normal', 'learning_rate': 0.1} mean=-0.4183, std=0.01901 using {'batch_size': 512, 'epochs': 30, 'hidden_layer_count': 2, 'hidden_neuron_count_1': 32, 'hidden_neuron_count_2': 32, 'init_mode': 'normal', 'learning_rate': 0.1}
init_mode = 'normal'
epochs = 30
batch_size = 512
learning_rate = 0.1
hidden_layer_count = 2
hidden_neuron_count_1 = 32
hidden_neuron_count_2 = 64
model = create_model(learning_rate = learning_rate, init_mode = init_mode,
hidden_layer_count = hidden_layer_count,
hidden_neuron_count_1 = hidden_neuron_count_1, hidden_neuron_count_2 = hidden_neuron_count_2)
# summary of the model
model.summary()
Model: "sequential_28" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_84 (Dense) (None, 32) 480 _________________________________________________________________ dense_85 (Dense) (None, 64) 2112 _________________________________________________________________ dense_86 (Dense) (None, 1) 65 ================================================================= Total params: 2,657 Trainable params: 2,657 Non-trainable params: 0 _________________________________________________________________
from numpy.random import seed
seed(101)
tf.random.set_seed(102)
# training the model
# validation data will be evaluated at the end of each epoch
model_history = model.fit(X_train2, y_train2, validation_data=(X_test2, y_test2),
epochs = epochs, batch_size = batch_size, validation_split = 0.2)
utils.saveKerasModelToFile('./model/model_{}'.format('NN'), model)
Epoch 1/30 11/11 [==============================] - 0s 13ms/step - loss: 0.4017 - mse: 0.4017 - val_loss: 0.3963 - val_mse: 0.3963 Epoch 2/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4002 - mse: 0.4002 - val_loss: 0.3991 - val_mse: 0.3991 Epoch 3/30 11/11 [==============================] - 0s 6ms/step - loss: 0.4013 - mse: 0.4013 - val_loss: 0.3901 - val_mse: 0.3901 Epoch 4/30 11/11 [==============================] - 0s 6ms/step - loss: 0.3982 - mse: 0.3982 - val_loss: 0.3928 - val_mse: 0.3928 Epoch 5/30 11/11 [==============================] - 0s 6ms/step - loss: 0.3982 - mse: 0.3982 - val_loss: 0.3930 - val_mse: 0.3930 Epoch 6/30 11/11 [==============================] - 0s 6ms/step - loss: 0.3963 - mse: 0.3963 - val_loss: 0.3928 - val_mse: 0.3928 Epoch 7/30 11/11 [==============================] - 0s 6ms/step - loss: 0.3941 - mse: 0.3941 - val_loss: 0.3956 - val_mse: 0.3956 Epoch 8/30 11/11 [==============================] - 0s 6ms/step - loss: 0.3966 - mse: 0.3966 - val_loss: 0.3970 - val_mse: 0.3970 Epoch 9/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4009 - mse: 0.4009 - val_loss: 0.4072 - val_mse: 0.4072 Epoch 10/30 11/11 [==============================] - 0s 10ms/step - loss: 0.3943 - mse: 0.3943 - val_loss: 0.3940 - val_mse: 0.3940 Epoch 11/30 11/11 [==============================] - 0s 10ms/step - loss: 0.3933 - mse: 0.3933 - val_loss: 0.3947 - val_mse: 0.3947 Epoch 12/30 11/11 [==============================] - 0s 7ms/step - loss: 0.3973 - mse: 0.3973 - val_loss: 0.3875 - val_mse: 0.3875 Epoch 13/30 11/11 [==============================] - 0s 6ms/step - loss: 0.4044 - mse: 0.4044 - val_loss: 0.4026 - val_mse: 0.4026 Epoch 14/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4074 - mse: 0.4074 - val_loss: 0.4038 - val_mse: 0.4038 Epoch 15/30 11/11 [==============================] - 0s 6ms/step - loss: 0.4072 - mse: 0.4072 - val_loss: 0.4077 - val_mse: 0.4077 Epoch 16/30 11/11 [==============================] - 0s 9ms/step - loss: 0.4124 - mse: 0.4124 - val_loss: 0.4003 - val_mse: 0.4003 Epoch 17/30 11/11 [==============================] - 0s 7ms/step - loss: 0.3970 - mse: 0.3970 - val_loss: 0.4052 - val_mse: 0.4052 Epoch 18/30 11/11 [==============================] - 0s 8ms/step - loss: 0.3956 - mse: 0.3956 - val_loss: 0.4002 - val_mse: 0.4002 Epoch 19/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4071 - mse: 0.4071 - val_loss: 0.3954 - val_mse: 0.3954 Epoch 20/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4153 - mse: 0.4153 - val_loss: 0.4010 - val_mse: 0.4010 Epoch 21/30 11/11 [==============================] - 0s 9ms/step - loss: 0.3971 - mse: 0.3971 - val_loss: 0.4004 - val_mse: 0.4004 Epoch 22/30 11/11 [==============================] - 0s 8ms/step - loss: 0.3933 - mse: 0.3933 - val_loss: 0.4077 - val_mse: 0.4077 Epoch 23/30 11/11 [==============================] - 0s 7ms/step - loss: 0.3937 - mse: 0.3937 - val_loss: 0.3920 - val_mse: 0.3920 Epoch 24/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4018 - mse: 0.4018 - val_loss: 0.3870 - val_mse: 0.3870 Epoch 25/30 11/11 [==============================] - 0s 8ms/step - loss: 0.3948 - mse: 0.3948 - val_loss: 0.3972 - val_mse: 0.3972 Epoch 26/30 11/11 [==============================] - 0s 8ms/step - loss: 0.3952 - mse: 0.3952 - val_loss: 0.3985 - val_mse: 0.3985 Epoch 27/30 11/11 [==============================] - 0s 7ms/step - loss: 0.4105 - mse: 0.4105 - val_loss: 0.4103 - val_mse: 0.4103 Epoch 28/30 11/11 [==============================] - 0s 8ms/step - loss: 0.4039 - mse: 0.4039 - val_loss: 0.3941 - val_mse: 0.3941 Epoch 29/30 11/11 [==============================] - 0s 8ms/step - loss: 0.3965 - mse: 0.3965 - val_loss: 0.3941 - val_mse: 0.3941 Epoch 30/30 11/11 [==============================] - 0s 7ms/step - loss: 0.3974 - mse: 0.3974 - val_loss: 0.3896 - val_mse: 0.3896
# Predicting the test set results
y_pred = model.predict(X_test2)
y_pred_ = y_pred.copy()
y_pred_ = sc_y.inverse_transform(y_pred_)
#result.loc['NN', 'Accuracy'] = model.score(X_test2, y_test2)
df_compare.loc['NN', 'R2'] = r2_score(y_test2_, y_pred_)
df_compare.loc['NN', 'RMSE'] = np.sqrt(metrics.mean_squared_error(y_test2_, y_pred_))
df_pred['NN'] = y_pred_.flatten()
df_pred['NN' + '_Diff'] = df_pred['NN'] - df_pred['Actual']
df_compare
Accuracy | R2 | RMSE | |
---|---|---|---|
LR | 0.577368 | 0.577368 | 1120.07 |
DT | 0.601324 | 0.601324 | 1087.86 |
RF | 0.610356 | 0.610356 | 1075.46 |
XGB | 0.588911 | 0.588911 | 1104.66 |
NN | NaN | 0.60379 | 1084.49 |
# summarize history for loss
plt.plot(model_history.history['loss'])
plt.plot(model_history.history['val_loss'])
plt.title('model loss (MAE)')
plt.ylabel('loss (MAE)')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
df_pred.head()
Actual | LR | DT | RF | XGB | NN | LR_Diff | DT_Diff | RF_Diff | XGB_Diff | NN_Diff | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3649.2498 | 4152.777059 | 4177.126769 | 4362.486917 | 4636.114258 | 4980.740723 | 503.527259 | 527.876969 | 713.237117 | 986.864458 | 1331.490923 |
1 | 1845.5976 | 1748.367116 | 1609.727606 | 1661.258917 | 1722.172852 | 1793.184448 | -97.230484 | -235.869994 | -184.338683 | -123.424748 | -52.413152 |
2 | 2675.1844 | 3111.527183 | 3277.232870 | 3152.736701 | 3145.410400 | 3089.870361 | 436.342783 | 602.048470 | 477.552301 | 470.226000 | 414.685961 |
3 | 675.7870 | 1406.538312 | 1698.317841 | 1550.695218 | 1427.145996 | 1461.161987 | 730.751312 | 1022.530841 | 874.908218 | 751.358996 | 785.374987 |
4 | 3755.1120 | 3074.800687 | 2780.539010 | 3026.568030 | 2896.585693 | 2871.993896 | -680.311313 | -974.572990 | -728.543970 | -858.526307 | -883.118104 |
df_pred.describe()
Actual | LR | DT | RF | XGB | NN | LR_Diff | DT_Diff | RF_Diff | XGB_Diff | NN_Diff | |
---|---|---|---|---|---|---|---|---|---|---|---|
count | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 | 1705.000000 |
mean | 2205.287752 | 2215.099563 | 2234.490273 | 2232.126500 | 2232.993408 | 2227.853271 | 9.811811 | 29.202521 | 26.838748 | 27.706141 | 22.564280 |
std | 1723.413422 | 1297.153774 | 1342.527545 | 1329.410587 | 1341.378662 | 1231.213135 | 1120.351132 | 1087.784126 | 1075.444888 | 1104.639925 | 1084.571454 |
min | 33.290000 | -1341.861640 | 125.674018 | 99.152185 | 63.563324 | 69.647552 | -7958.658690 | -7245.782507 | -7136.165117 | -8476.703081 | -7583.095171 |
25% | 874.861200 | 1422.587499 | 1223.858133 | 1286.458772 | 1243.536499 | 1357.741577 | -568.115929 | -460.207478 | -428.912991 | -440.187663 | -420.083927 |
50% | 1796.328400 | 2264.628770 | 2219.920691 | 2043.532406 | 2136.619873 | 2220.257324 | 90.353612 | 61.047379 | 51.880385 | 76.984206 | 128.214438 |
75% | 3062.014200 | 3090.338492 | 3145.924206 | 3116.056554 | 3106.416016 | 3033.392334 | 654.206687 | 552.067093 | 564.323609 | 561.872671 | 564.015479 |
max | 13086.964800 | 5627.446026 | 5841.182293 | 5988.314653 | 7536.988281 | 6807.272949 | 3736.815715 | 3782.656790 | 3673.337887 | 4581.421832 | 3515.197989 |
plt.figure(figsize=(20,10))
plt.plot(df_pred.loc[100:200, ['DT_Diff', 'NN_Diff']])
plt.ylabel('Prediction')
plt.xlabel('No')
plt.legend(['Actual', 'NN'], loc='upper left')
plt.show()
df_test = pd.read_csv('./data/test_preprocessed.csv')
# removing the Item_Identifier and Outlet_Identifier since these are just the unique values
df_test_X = df_test.drop(['Item_Identifier', 'Outlet_Identifier', 'Item_Outlet_Sales'], axis = 1)
df_test_X = sc_x.transform(df_test_X)
sel_model_name = 'RF'
sel_model = utils.loadModelFromFile('./model/model_{}.pkl'.format(sel_model_name))
df_test_pred = sel_model.predict(df_test_X)
df_test_pred = sc_y.inverse_transform(df_test_pred)
df_submit = pd.DataFrame({
'Item_Identifier': df_test['Item_Identifier'],
'Outlet_Identifier': df_test['Outlet_Identifier'],
'Item_Outlet_Sales': df_test_pred
})
df_submit
Item_Identifier | Outlet_Identifier | Item_Outlet_Sales | |
---|---|---|---|
0 | FDW58 | OUT049 | 1665.141912 |
1 | FDW14 | OUT017 | 1322.921290 |
2 | NCN55 | OUT010 | 584.688384 |
3 | FDQ58 | OUT017 | 2419.066603 |
4 | FDY38 | OUT027 | 5864.912108 |
... | ... | ... | ... |
5676 | FDB58 | OUT046 | 2155.529586 |
5677 | FDD47 | OUT018 | 2666.935751 |
5678 | NCO17 | OUT045 | 1971.914028 |
5679 | FDJ26 | OUT017 | 3633.478082 |
5680 | FDU37 | OUT045 | 1313.342274 |
5681 rows × 3 columns
df_submit['Item_Outlet_Sales'].describe()
count 5681.000000 mean 2186.534538 std 1322.257052 min 98.731680 25% 1164.739773 50% 2033.908262 75% 3090.710843 max 5973.869186 Name: Item_Outlet_Sales, dtype: float64
df_submit.to_csv('./submission/submit_{}.csv'.format(sel_model_name), index=False)